



## **Future Academy** Higher Future Institute for Specialized Technological Studies

## **Course Specification**

# 1- Course information:

| Course Code:        | BSC203                                             |
|---------------------|----------------------------------------------------|
| Course Title:       | Discrete Structures                                |
| Year/level          | 2 <sup>nd</sup>                                    |
| Academic Programs   | Computer Science Program (B.Sc.)                   |
| Contact hours/ week | (Theoretical =2hrs, Practical = 2hrs), Total= 4hrs |

## 2- Course aims:

This course aims to provide students with a solid background on discrete mathematic and structures pertinent to computer science. This course covers a collections of topics such as propositional logic; set theory; set operations; mathematical reasoning; matrices; Matrix operations; counting techniques; graphs representation; tree; and related topics.

## 3- Intended learning outcomes of the course (ILOs):

## a- Knowledge and understanding:

## On successful completion of this course, the student should be able to:

al- **Recognize** the importance of studying discrete mathematics and its applications in computer science.

a2- **Define** the main concepts of Propositional logic and its applications in our daily life problems

a3- **Determine** the main features of using sets, sets operations and representing computer problems using sets.

a4. Recognize the different approaches for proving set identities

a5. **Present** the importance of matrices, matrices operations and representing computers problems using matrices.

a6. Recognize the main concepts of recursion and its algorithms

a7. **Define** the importance of studying graphs, trees and their algorithms and applications in computer science

#### **b- Intellectual skills:**

#### On completing this course, the student should be able to:

b1- **Clarify** the ideas, principles, theories, and mathematical methods that support information and computer science as a field of study.

b2. Formulate the computer software and hardware specifications using propositional logics

b3. **Describe the** concepts, plans, and designs for the presentation of computing systems by employing graphs and trees

#### c- Professional and practical skills:

#### At the end of this course, the student will be able to:

c1- Analyze a wide range of computer problems using propositional logic

c2- Solve a wide range of problems using sets and matrices

c3- Utilize problems using recursion methodology

c4. Examine graphs and tree based problems in our daily life

#### d- General and transferable skills:

#### On successful completion of this course, the student should be able to:

d1- **Display** personal responsibility by working to multiple deadlines in relation to the course requirements

d2- Demonstrate an integrated approach to the deployment of communication skills

### 4- Course contents

| Week | Topics/units                                                                                    | Number            | of hours | ILO's              |
|------|-------------------------------------------------------------------------------------------------|-------------------|----------|--------------------|
| No.  |                                                                                                 | Lecture Practical |          |                    |
|      |                                                                                                 | hours             | hours    |                    |
| 1    | Introduction to Discrete mathematics and it's applications                                      | 2                 | 2        | a1, b1,            |
| 2    | Representing mathematical<br>statements using Propositional<br>logic and their basic operations | 2                 | 2        | a1, a2, b1, b2, c1 |
| 3    | Applications of propositional logic                                                             | 2                 | 2        | a1, a2, b2         |
| 4    | Sets and computer representation<br>of Sets + Quiz 1                                            | 2                 | 2        | a3, a4, c1, d1     |
| 5    | Sets operations and functions                                                                   | 2                 | 2        | a3, a4, c1, d1     |
| 6    | Introduction to matrices                                                                        | 2                 | 2        | a5, c2             |
| 7    | Midterm Exam                                                                                    |                   |          |                    |
| 8    | Advanced matrices operations and representations                                                | 2                 | 2        | a5, c1, c2, d1     |
| 9    | Introduction to recursion and its algorithms                                                    | 2                 | 2        | a1, a6, c3, d1     |

| 10 | Introduction to Graphs and their applications | 2 | 2 | a1, a7, b3         |
|----|-----------------------------------------------|---|---|--------------------|
| 11 | Graph representation+ Quiz 2                  | 2 | 2 | a1, a7, b3         |
| 12 | Graph algorithms                              | 2 | 2 | a7, b3, c1, c4     |
| 13 | Tree, algorithms and applications             | 2 | 2 | a1, a7, b3, c1, c4 |
| 14 | Final Revision                                | 2 | 2 |                    |

## 5- Teaching and learning methods

| Methods            | ILOs |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |
|--------------------|------|----|----|----|----|----|----|----|----|----|----|----|--------------|----|--------------|----|
|                    | a1   | a2 | a3 | a4 | a5 | a6 | a7 | b1 | b2 | b3 | c1 | c2 | c3           | c4 | d1           | d2 |
| Lectures           |      |    |    |    |    |    |    |    |    |    |    |    | $\checkmark$ |    |              |    |
| Practical sections |      |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |
| Self-learning      |      |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |
| Problem solving    |      |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |
| Assays and reviews |      |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |
| Discussion groups  |      |    |    |    |    |    |    |    |    |    |    |    |              |    | $\checkmark$ |    |
| Brainstorming      |      |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |
| Blended-learning   |      |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |
| E-learning         |      |    |    |    |    |    |    |    |    |    |    |    |              |    |              |    |

## 6- Teaching and learning methods for Low-achieving students

- Additional teaching hours for those who need help "Office Hours"
- More quizzes to assess their ability for understanding the course.
- Encourage the teamwork for those students with other advanced ones to increase their participation and understanding.

## 7-Student assessment

| Assessment method                                      | Time                       | Grade weight<br>(%) | Week       | ILOs                   |  |  |  |
|--------------------------------------------------------|----------------------------|---------------------|------------|------------------------|--|--|--|
| Course Work ( Tutorial<br>Exercise and<br>Assignments) | Through<br>the<br>semester | 20                  | Every Week | a2, a3, a5, c2, c3, d1 |  |  |  |
| Quiz 1                                                 |                            | 5                   | Week#4     | a1, a2, b1, c1         |  |  |  |
| Mid-term exam                                          | 1 hours                    | 10                  | Week#7     | a3, a4, b1, c1         |  |  |  |

| Quiz 2       | Through<br>the<br>lecture | 5  | Week#11     | a5, a6, a7, b3, c2, c3,<br>c4             |
|--------------|---------------------------|----|-------------|-------------------------------------------|
| Written exam | 2 hours                   | 60 | Week# 15-16 | a2, a3, a4, a5, a6, a7,<br>b2, b3, c2, c3 |

## 8-List of references

#### 8.1. Student notebooks:

Comprehensive instructor notes ("PowerPoint slides") are available on the course web page ("Google Classroom")

#### 8.2. Essential textbooks:

 Discrete mathematics and its applications, Kenneth H.Rozen, Eighth Edition, ISBN-13: 9781260912784 ; 2019

#### 8.3. Recommended textbooks:

 Discrete Mathematics for Computer Science, Jon Pierre Fortney, First Edition, ISBN-13: 978-0367549893, 2020

#### 8.4. Journals, Periodical and Reports ......etc.

#### 8.5. Websites

- <u>https://www.geeksforgeeks.org/discrete-mathematics-tutorial/</u>
- <u>https://byjus.com/maths/discrete-mathematics/</u>

**Course Coordinator:** *Dr. Mostafa Ibrahim ElKhalil* **Head of department:** *Prof. Dr. Yasser F. Ramadan* **Date of Approval:** 24/7/2024