

Future Academy Higher Future Institute for Specialized Technological Studies

Course Specification

1- Course information:						
Course Code:	BSC102					
Course Title:	Discrete Mathematics					
Year/level	1 st					
Academic Programs	Computer Science Program (B.Sc.)					
Contact hours/ week	(Theoretical =2hrs, Tutorial = 2hrs), Total=hrs					

2- Course aims:

This course aims to provide students with a solid background on discrete mathematics and structures pertinent to computer science. This course covers a collections of topics such as propositional logic; set theory; set operations; mathematical reasoning; matrices; Matrix operations; counting techniques; graphs representation; tree; and related topics.

3- Intended learning outcomes of the course (ILOs):

a- Knowledge and understanding:

On successful completion of this course, the student should be able to:

al- **Recognize** the importance of studying discrete mathematics and its applications in computer science.

a2- **Define** the main concepts of Propositional logic and its applications in our daily life problems

a3- **Determine** the main features of using sets, sets operations and representing computer problems using sets.

a4. Recognize the different approaches for proving set identities

a5. **Present** the importance of matrices, matrices operations and representing computers problems using matrices.

a6. Recognize the main concepts of recursion and its algorithms

a7. **Define** the importance of studying graphs, trees and their algorithms and applications in computer science

b- Intellectual skills:

On completing this course, the student should be able to:

b1- **Clarify** the ideas, principles, theories, and mathematical methods that support information and computer science as a field of study.

b2. Formulate the computer software and hardware specifications using propositional logics

b3. **Describe the** concepts, plans, and designs for the presentation of computing systems by employing graphs and trees

c- Professional and practical skills:

At the end of this course, the student will be able to:

c1- Analyze a wide range of computer problems using propositional logic

c2- Solve a wide range of problems using sets and matrices

c3- Utilize problems using recursion methodology

c4. Examine graphs and tree based problems in our daily life

d- General and transferable skills:

On successful completion of this course, the student should be able to:

d1- **Display** personal responsibility by working to multiple deadlines in relation to the course requirements

d2- Demonstrate an integrated approach to the deployment of communication skills

4- Course contents

Week	Topics/units	Number	of hours	ILO's
No.	•	Lecture hours	Practical hours	
1	Introduction to Discrete mathematics and it's applications	2	2	a1, b1,
2	Representing mathematical statements using Propositional logic and their basic operations	2	2	a1, a2, b1, b2, c1
3	Applications of propositional logic	2	2	a1, a2, b2
4	Sets and computer representation of Sets + Quiz 1	2	2	a3, a4, c1, d1
5	Sets operations and functions	2	2	a3, a4, c1, d1
6	Introduction to matrices	2	2	a5, c2
7	Midterm Exam			
8	Advanced matrices operations and representations	2	2	a5, c1, c2, d1
9	Introduction to recursion and its algorithms	2	2	a1, a6, c3, d1
10	Introduction to Graphs and their applications	2	2	a1, a7, b3
11	Graph representation+ Quiz 2	2	2	a1, a7, b3

12	Graph algorithms	2	2	a7, b3, c1, c4
13	Tree, algorithms and applications	2	2	a1, a7, b3, c1, c4
14	Final Revision	2	2	

5- Teaching and learning methods

Methods																
	a1	a2	a3	a4	a5	a6	a7	b1	b2	b3	c1	c2	c3	c4	d1	d2
Lectures				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark				\checkmark		\checkmark	\checkmark
Practical sections					\checkmark	\checkmark						\checkmark	\checkmark			
Self-learning																
Problem solving					\checkmark							\checkmark	\checkmark			
Assays and reviews																
Discussion groups																
Brainstorming																
Blended-learning																
E-learning																

6- Teaching and learning methods for Low-achieving students

- Additional teaching hours for those who need help "Office Hours"
- More quizzes to assess their ability for understanding the course.
- Encourage the teamwork for those students with other advanced ones to increase their participation and understanding.

7-Student assessment

Assessment method	Time	Grade weight (%)	Week	ILOs
Course Work (Tutorial Exercise and Assignments)	Through the semester	20	Every Week	a2, a3, a5, c2, c3, d1
Quiz 1		5	Week#4	a1, a2, b1, c1
Mid-term exam	1 hours	10	Week#7	a3, a4, b1, c1
Quiz 2	Through the lecture	5	Week#11	a5, a6, a7, b3, c2, c3, c4
Written exam	2 hours	60	Week# 15-16	a2, a3, a4, a5, a6, a7, b2, b3, c2, c3

8-List of references

8.1. Student notebooks:

Comprehensive instructor notes ("PowerPoint slides") are available on the course web page ("Google Classroom")

8.2. Essential textbooks:

 Discrete mathematics and its applications, Kenneth H.Rozen, Eighth Edition, ISBN-13: 9781260912784 ; 2019

8.3. Recommended textbooks:

 Discrete Mathematics for Computer Science, Jon Pierre Fortney, First Edition, ISBN-13: 978-0367549893, 2020

8.4. Journals, Periodical and Reportsetc.

8.5. Websites

- <u>https://www.geeksforgeeks.org/discrete-mathematics-tutorial/</u>
- <u>https://byjus.com/maths/discrete-mathematics/</u>

Course Coordinator: Dr. Mostafa Ibrahim ElKhalil **Head of department:** Prof. Dr. Yasser F. Ramadan **Date of approval:** 24/7/2024