

Future Academy Higher Future Institute for Specialized Technological Studies

Course Specification

1- Course information:	
Course Code:	CSC391
Course Title:	Software Engineering1
Year/level	4 th
Academic Programs	Computer science (B.Sc.)
Contact hours/ week	(Theoretical=2hrs, Practical/Tutorial=2hrs), Total=4hrs

2- Course aims:

- Learn the major alternative methodologies used in developing software.
- Analyze the business requirements for information and to develop an appropriate strategy to provide the required information service.
- Use various information gathering techniques for eliciting user information requirements and system expectations.
- Construct and interpret a variety of system analysis and design models including UML diagrams and structured models.
- Produce the required systems documentation including project plan at each point in the software development

3- Intended learning outcomes of the course (ILOs):

a- Knowledge and understanding:

On successful completion of this course, the student should be able to:

- al- Define a comprehensive understanding of core software engineering principles.
- a2- Determine the system requirements.
- a3- Present principles of robust and maintainable software systems.
- a4- List software development tools effectively and the role of emerging technologies in software engineering.
- a5- Stat various testing techniques to ensure software quality and the importance of software quality assurance.

b- Intellectual skills:

On completing this course, the student should be able to:

- b1- Create detailed and accurate software requirements specifications and functional and non-functional requirements.
- b2- Formulate software development methodologies (e.g., Agile, Waterfall), clear and concise software designs, and modeling software systems using appropriate techniques (e.g., UML).
- b3- Design testing and acceptance strategies for software engineering systems.
- b4- Apply appropriate programming languages and tools for clean, efficient, and maintainable code.
- b5- Review software components and systems to ensure quality.

c- Professional and practical skills:

At the end of this course, the student will be able to:

- c1- Show software development methodologies (e.g., Agile, Waterfall) to manage projects effectively.
- c2- Analyze graphical techniques to create conceptual system models of various types.
- c3- Label aims and objectives for a project and develop metrics to assess them.
- c4- Apply ethical principles in software development, such as data privacy and responsible software usage.
- c5- Recommend involvement with developers, designers, and stakeholders to achieve project goals.

d- General and transferable skills:

On successful completion of this course, the student should be able to:

- d1-Management complex problems and break them down into smaller, manageable subproblems.
- d2- Compute potential challenges and risks associated with a project to mitigate them.
- d3- Communicate technical concepts clearly and concisely to both technical and non-technical audiences.
- d4- Working in groups with team members to achieve common goals.
- d5- Think creatively for innovative solutions to problems and commitment to lifelong learning and professional development.

4- Course contents

		Number o	ILO's		
Week No.	Topics/units	Lecture hours	Practical/ Tutorial hours		
1	Introduction to software engineering, Professional software development	2	2	a1, c1	
2	what is meant by software engineering and Software engineering ethics.	2	2	a1, c4	
3	Software process models, Process activities and Process improvement.	2	2	a3, c1	
4	Coping with change + Quiz 1	2	2	d2	
5	Agile methods, Agile development techniques, Agile project management, Functional and non-functional requirements and Requirements.	2	2	b1, c1	
6	Engineering processes, Requirements elicitation, Requirements specification,	2	2	a2, b1	

	Requirements validation and			
	Requirements change			
7	Midterm Exam	-	-	-
8	System modeling: Context models,			
	Interaction models, Structural models,	2	2	b2, c2
	Behavioral models and Model-driven	2	2	02, 62
	engineering			
9	Architectural design decisions,			
	Architectural views, Architectural	2	2	a3, b2
	patterns and Application architectures			
10	Design and Implementation: Object-			
	oriented design using the UML, Design	2	2	b2, b4
	patterns, Implementation issues and	2	2	02, 04
	Open-source development			
11	Software development testing, Test-	2	2	a5, b5
	driven development + Quiz 2	2	2	a5, 05
12	Release testing And User testing	2	2	a5, b5
13	Software Evolution processes	2	2	c3, a3
14	Legacy systems and Software	2	2	c3, a3
	maintenance	2		C5, a5

5- Teaching and learning methods

Methods	ILO's																			
	a1	a2	a3	a4	a5	b1	b2	b3	b4	b5	c1	c2	c3	c4	c5	d1	d2	d3	d4	d5
Lectures	1				1															
Tutorial / Practical						V				$\sqrt{}$	1									
sections																				
Self-learning																				1
Assays and reviews						1				$\sqrt{}$										
Discussion groups																		1	1	
Brainstorming										$\sqrt{}$						V				V
Blended-learning																				
E-learning					V													1	V	V

6- Teaching and learning methods for Low-achieving students

- Extra teaching hours for those who need help
- More quizzes to assess their ability for understanding the course
- Encourage the team work for those students with other advanced ones to increase their participation and understanding

7- Student assessment

Assessment method	Time	Grade weight (%)	Week	ILOs
Course Work (Tutorial Exercise and Assignments)	Through the semester	20	Every week	a3, a4, a5, b2, b5, c2, c3, d1, d2, d4
Quiz 1	30 mins	5	Week 4	a1, a2, b1, d3
Mid-term exam	60 mins	10	Week 7	a1, a3, a5, b1, b3, c3, d2, d4
Quiz 2	30 mins	5	Week 11	
Final Written exam	120 mins	60	End of the semester	

8-List of references

8.1. Student notebooks:

 Comprehensive instructor notes ("PowerPoint slides") are available on the course web page ("Google Classroom")

8.2. Essential textbooks:

SOFTWARE ENGINEERING - Ten Edition - Ian Sommerville.

8.3. Recommended textbooks:

Roger S Pressman - Software Engineering-A Practitioner's Approach - 8th Edition.

8.4. Journals, Periodical and Reportsetc.

- Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson Education.
- Gamma, E. (1995). Design patterns: elements of reusable object-oriented software.
- Jalote, P. (2008). A concise introduction to software engineering. Springer Science & Business Media.
- Dooley, J. F., & Kazakova, V. A. (2024). Introduction to Software Development.
 In Software Development, Design, and Coding: With Patterns, Debugging, Unit Testing, and Refactoring (pp. 1-7). Berkeley, CA: Apress.

8.5. Websites

https://web.gisma.com/beng-softwareengineering?utm_source=google&medium=cpc&utm_campaign=gisma_hochschule_be_s
oftware_engg_tier2_search&utm_term=be%20software%20engineering&creative=6465
19426972&network=g&device=c&placement=&adposition=&gad_source=1&gclid=CjwKC

<u>AiA3Na5BhAZEiwAzrfagC79bqoG8oR0kBxh9xXyiGj1_VeHH3rHgYREUtA-aZjt3-</u> <u>0iksatyhoCYtUQAvD_BwE</u>

- https://www.edx.org/learn/software-engineering
- https://www.coursera.org/courses?query=software%20engineering
- https://www.codecademy.com/resources/docs/general/software-engineering

Course Coordinator: *Dr. Ahmad Nagm*

Head of department: Prof. Dr. Yasser F. Ramadan

Date of Approval: 24/7/2024